Modify Surface Tension
Water molecules are attracted to each other, a phenomenon known as cohesion. The molecules at the surface of water, such as in a pond, do not have other water molecules on all sides of them. Therefore they cohere more strongly to molecules next to and below them. This strong horizontal cohesion creates a “tension” on the surface of water that is more difficult to break through, allowing various items and organisms such as insects to perch on top of without sinking through.
Modify Solubility (Dissolving, Emulsifying, Precipitating, Crystallizing)
Increasing or decreasing the solubility of chemical constituents is one way of managing a host of metabolic processes including material synthesis. For example, organisms that produce calciferous shells utilize dissolved calcium and carbonate ions, but when the time is right, they raise the pH to create alkaline conditions that trigger calcium carbonate to precipitate out of solution as an insoluble solid.
Move in/on Solids
To obtain needed resources or escape predators, some living systems must move on solid substances, some must move within them, and others must do both. Solids vary in their form; they can be soft or porous like leaves, sand, skin, and snow, or hard like rock, ice, or tree bark. Movement can involve a whole living system, such as an ostrich running across the ground or an earthworm burrowing through the soil. It can also involve just part of a living system, such as a mosquito poking its mouthparts into skin. Solids vary in smoothness, stickiness, moisture content, density, etc, each of which presents different challenges. As a result, living systems have adaptations to meet one, and sometimes multiple, challenges. For example, some insects must be able to hold onto both rough and slippery leaf surfaces due to the diversity in their environment.
Move in/Through Gases
Living systems must move through gases (which are less dense than liquids and solids) such as those in the earth’s atmosphere. The greatest challenge of moving in gases is that because the living system is heavier than the gas, it must overcome the force of gravity. Moving efficiently in this light medium presents unique challenges and opportunities for living systems. As a result, they have evolved countless solutions to optimize drag and increase lift so that they can stay aloft and take advantage of variable currents. Additionally, they must overcome gravity when moving from a liquid or solid into the air. The fairyfly, the smallest known insect, is a tiny wasp that must move through the air. To the wasp, air feels like a heavy liquid and to move through it, it uses special feathery oars rather than wings.
Store Energy
Once a living system captures energy or transforms one energy form into another, it must frequently save that energy for future use. But energy is difficult to store in some forms. So living systems need strategies to either use energy quickly, or to convert it from forms that are difficult to store (such as electrical or kinetic) to more storable forms. For example, grasshoppers store energy as potential energy in an elastic material in their tendons. When they need to jump, that energy converts into kinetic energy, providing the force needed to escape predators.