Cytoplasm of slime molds creates efficient connective networks using adaptive foraging strategies.

The slime mold Physarum polycephalum is an extremely effective forager capable of creating extensive and highly efficient networks between food sources. This single-celled creature, classified as a protist, oozes its way across surfaces in search of bacteria, fungal spores, and other microbes to feed on. As it spreads and grows in search of food, it naturally organizes itself into a network of tube-like structures that quickly and efficiently connect its disparate food sources.

Physarum maximizes its ability to find food by ‘remembering’ and strengthening the portions of its cytoplasm that connect to active food sources. By rhythmically contracting and expanding its body, Physarum is able to move and grow its body in search of food. When it fails to find food or the food source dries up, Physarum retracts its cytoplasm, leaving behind a trail of slime–essentially marking which pathways are useful and which are dead-ends.

By trimming back connections and maintaining only active pathways, Physarum uses the least amount of resources and energy possible while still creating a resilient and fault-tolerant system. Links between food sources are made covering the shortest possible distances, but are connected in such a way that a disruption in one area does not impact the overall health or efficiency of the slime mold’s network.

This summary was contributed by Emily Hoehn.

Watch how Physarum’s foraging skills can help self-driving cars:

video thumbnail

Related Innovations

Last Updated July 1, 2020