Attach Permanently
A living system can conserve energy by attaching permanently to a particular site because it can take advantage of resources that come its way, rather than expending energy to move to resources. A permanent attachment, intended to last the lifetime of the living system, creates special challenges. For example, physical mechanisms, such as the anchor that holds a marine algae to the ocean’s bottom, must be able to withstand forces that can pull it off its substrate. Chemical mechanisms, such as a barnacle’s glue, must avoid both physical and chemical breakdown, such as being dissolved by water.
Manage Shear
The effect of shear stress on a living system is parallel internal surfaces sliding past each other. Slippage occurs in parallel with the force. Think about holding two wooden boards on top of each other and sliding one to the right and the other to the left. This may be easy until you add glue, which increases their shear strength and makes them harder or impossible to slide. Shear can occur in solids, liquids, and gases. Living systems must increase their shear strength to overcome these types of forces. For example, darkling beetles lock their wings together in flight to prevent lateral movement by using many small hairs on each wing. These hairs interlock to provide shear strength, just as two hair brushes put together would be difficult to slide past each other.
Manage Turbulence
A turbulent force occurs when air or water creates a chaotic or irregular motion. The source can be such things as wind, waves, and eddies caused by obstructions to air or water flow (such as that created by a rock in a stream). Because the force is irregular, it acts in unpredictable ways on multiple parts of a living system at any given time, decreasing the living system’s efficiency. Strategies used to manage turbulence include dampening the amount of turbulence, having flexibility to handle sudden changes, and making quick adjustments. An example is the mucus on aquatic organisms, such as barracuda sharks, that can reduce turbulent friction of seawater by 66%. In doing so, it decreases drag and increases the sharks’ swimming efficiency.