Nanostructures on the cuticle of the firefly's abdomen help transmit bioluminescent light efficiently because they perfectly match the wavelength of light being emitted.
A male firefly attracts mates by emanating bioluminescent light from a lantern on its abdomen. The lantern is comprised of three layers: a luminous layer, a nanostructured cuticle, and a dorsal layer. Typically, a material like the cuticle would block the bioluminescent light emitted from the luminous layer; it would be reflected back internally and never seen from the outside. This is because the wavelengths of light emitted from the luminous layer would not match up evenly with the surface of the cuticle, so it would hit it and bounce back.
But the firefly’s design addresses this challenge. The surface of its cuticle is covered in a series of precise nanostructures arranged in an orderly fashion. These “nanobumps” perfectly match the wavelength of light being emitted, ensuring that it passes right through the cuticle so a female can see it. Approximately 41% of the light produced is efficiently transmitted outside the firefly’s cuticle.
This summary was contributed by Tamsin Woolley-Barker and Ashley Meyers.